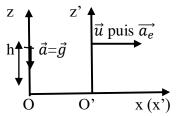
TD 1 : changement de référentiels

Exercice 1 : chute d'un corps dans un référentiel non galiléen

On laisse tomber d'un immeuble de hauteur h une bille sans vitesse initiale. La chute de celleci s'effectue à la verticale selon un mouvement uniformément accéléré d'accélération \vec{g} supposé uniforme.

1. Quelle est la trajectoire de la bille dans un référentiel lié z à une voiture se déplaçant suivant un mouvement rectiligne et uniforme de vitesse u et passant à la verticale de chute au moment du lâcher $\vec{a} = \vec{g}$



- 2. Quelle est la trajectoire de la bille dans le même référentiel si on admet que la voiture entame au moment du lâcher et à partir de la verticale de chute un mouvement rectiligne uniformément accéléré d'accélération $\overrightarrow{a_e}$?
 - 3. Représenter dans chaque cas la trajectoire demandée.

Exercice 2 : bateau traversant une rivière

Les berges d'un fleuve sont parallèles. Leur distance est ℓ . La vitesse de l'eau est constante et égale à \vec{u} . Un bateau part d'un point A d'une berge et veut atteindre le point B situé sur l'autre berge exactement en face de A. Pour cela, il part de A avec une vitesse relative constante $\vec{V_r}$ faisant un angle φ avec la berge. Il atteint B au bout d'une durée t.

1. Déterminer la vitesse relative V_r et l'angle φ .

Application numérique : u = 2 m/s; $\ell = 400 \text{ m}$; t = 25 min.

Le bateau part maintenant d'un point A d'une berge avec une vitesse relative constante $\overrightarrow{V_r}$ constante pour atteindre un point C quelconque de l'autre berge.

- 2. Déterminer l'orientation de $\overrightarrow{V_r}$ pour que la durée de la traversée soit minimale.
- 3. Quelle est cette durée minimale, quel est le chemin alors parcouru ?

Exercice 3

En roulant sous la pluie à $v_I = 110 \text{ km.h}^{-1}$ sur une autoroute plane, un conducteur remarque que les gouttes de pluie ont, vues à travers les vitres latérales de sa voiture, des trajectoires qui font un angle de $\alpha = 80^{\circ}$ avec la verticale. Ayant arrêté sa voiture, il remarque que la pluie tombe, en fait, verticalement. Calculer la vitesse v et respectivement v' de la pluie par rapport à la voiture immobile et par rapport à la voiture se déplaçant à $v_I = 110 \text{ km.h}^{-1}$.

Exercice 4

On associe à une horloge un repère fixe OXY qui sera considéré comme référentiel absolu. On associe à l'aiguille des secondes un repère Oxy qui sera considéré comme relatif. La longueur de l'aiguille des secondes est L=30 cm. Un insecte parcourt d'un mouvement uniforme l'aiguille des secondes, qui a elle-même un mouvement uniforme non saccadé. Au départ, l'insecte est au centre O de l'horloge qui marque 0 seconde. Au bout d'une minute (T=1mn), l'insecte arrive à l'extrémité de l'aiguille.

- 1. Déterminer en fonction de L, T et du temps t la vitesse et l'accélération relative de M ainsi que sa position sur l'aiguille.
- 2. Déterminer de même la vitesse et l'accélération d'entraînement.
- 3. Déterminer l'accélération de Coriolis.
- **4.** Calculer le module de toutes ces grandeurs aux dates t = 0 s, t = 15 s, t = 30 s, t = 45 s et t = 1mn.
- 5. Représenter sur un schéma la trajectoire de M et le vecteur vitesse absolue pour ces 5 dates.
- 6. Même question pour le vecteur accélération absolue.

Exercice 5 : point matériel mobile sur un cerceau tournant

On considère un cercle de centre O placé dans un plan vertical. Ce cercle est animé d'un mouvement de rotation uniforme autour d'un axe verticale Oz à la vitesse angulaire ω . Un point M du cercle est animé d'un mouvement circulaire uniforme de vitesse angulaire ω' .

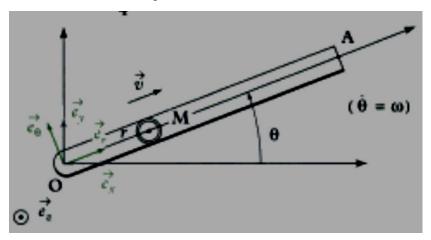
Déterminer en fonction de R (rayon du cercle), ω , ω' et de $\beta = \left(\overrightarrow{OM}, \overrightarrow{OM'}\right)$ (M', projeté de M sur le plan horizontal), les modules :

- 1. de la vitesse absolue,
- 2. de l'accélération absolue de M par rapport à un repère fixe.

Exercice 6

On étudie le mécanisme de lancement des pigeons d'argile dans un ball-trap. Le pigeons d'argile assimilé à un point matériel M de masse m peut se déplacer sans frottement le long d'un bras horizontal (de longueur $OA = \ell$) qui lui tourne à la vitesse ω (supposée constante) autour de l'axe $(O; \vec{e}_z)$ supposé vertical ascendant.

Au départ du mouvement, le pigeon d'argile est posé sans vitesse initiale par rapport au bras en $OA(t=0)=\frac{\ell}{4}$.

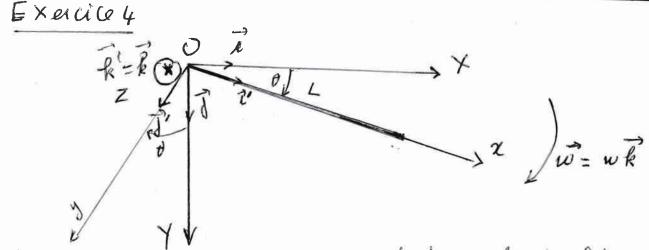


On suppose que le référentiel $\mathcal{R}_g(0; \vec{e}_x, \vec{e}_y, \vec{e}_z)$ est galiléen.

On repère la position de M par : $\overrightarrow{OM} = r\vec{e}_r$.

- **1.** Déterminer la variation de r en fonction du temps : r(t).
- 2. Indiquer au bout de combien de temps, le pigeon d'argile quitte le bras.
- **3.** Déterminer l'allure de la trajectoire de M dans \mathcal{R}_g .

Données numériques : $\omega = 6 \text{ rad.s}^{-1}$; $\ell = 1 \text{ m.}$



 $\Re(0, \vec{\lambda}_1 \vec{\beta}_1, \vec{k})$ referentiel fine (referentiel absolu) $\Re'(0, \vec{\lambda}_1 \vec{\beta}_1, \vec{k}')$ referentiel mobile (referentiel aelatif).

1) L'insecte a un monument de translation rectilique uniforme sur l'aignille $\vec{\alpha}_r(\eta) = 0$ $\vec{v}_r = \vec{c}t = \frac{1}{r} \vec{\lambda}_1' \quad \vec{v}_r = 510^3 \vec{\lambda}_1' dt$, $\vec{v}_r = 510^3 \vec{m}_1' dt$ $\vec{oH} = \vec{\lambda}_1' = \vec{v}_1' dt = (\frac{1}{r} t + ct) \vec{\lambda}_1'$, $\vec{u}_1' t = 0$ $\vec{oH} = \frac{1}{r} t \vec{\lambda}_1' \qquad \chi' = \frac{1}{r} t$

2) vitesse et accèleration d'entrainement vitesse d'entrainement: $\vec{V}e = \frac{d\vec{OO'}|_{\mathcal{R}} + \vec{w} \wedge \vec{O'}\vec{O'} \quad O'=0$ $\vec{V}e = \vec{w} \wedge \vec{OT} = \vec{w} \cdot \vec{k} \wedge \frac{1}{7} + \vec{t}'$ $\vec{V}e = \vec{w} + \vec{T}'$ $\vec{w} = \frac{2\vec{u}}{T}$

$$\vec{Ve} = \frac{2\pi Lt}{T^2} \vec{J}'$$

$$\widehat{\alpha_e} = -\frac{4\pi^2L}{\tau^3} + \widehat{\mathcal{I}}' = -\frac{4\pi^2}{\tau^2} \times \frac{L}{\tau} + \widehat{\mathcal{I}}'$$

$$\widehat{\alpha_e} = -\frac{4\pi^2L}{\tau^3} + \widehat{\mathcal{I}}'$$

3- L'acceleration de coriolis

4- Module des grandeurs

300	-										
	vecteurs	tems os		150		300				1	
	ar (n)	omps	0 m/s ²		0 m/s2			450		600	
	11 0-11	510 ⁻³ m/s					2	0 m/s2		0 m/0 ²	
4				510-3 m/		5.10 3m/		1 510 M/A		10 m/s	
	MOM II	0		7,5.10 m		1,510 m		2,2510 m			
	Haell (m/ð)	0	1 8	3,2210 mls			1.0				
	IIVell (m/s)	D		1		5710				14 10-2	
6	acll (m/s²).	1,05.10-3	11	05/16-3	1,	05 10-3	1,0	5 10 ⁻³	1,	0510-3	
					-	1					

$$\vec{V}_{(n)/R} = \vec{V}_{(n)/R'} + \vec{V}_{e} = \frac{1}{T} \vec{J}' + \frac{2\pi L}{T^{2}} \vec{J}'$$

$$\vec{V}_{(n)/R} = \vec{V}_{(n)/R'} + \vec{V}_{e} = \vec{V}_{(n)/R'} \vec{J}' \vec{J}'$$

		40	60
V(n)/R (m.51) 5.10-3 9,31.10-3 1,	6510° 2,	40.10	3,1710-2

Representation de la trajectoire

Representation vois fig 1.

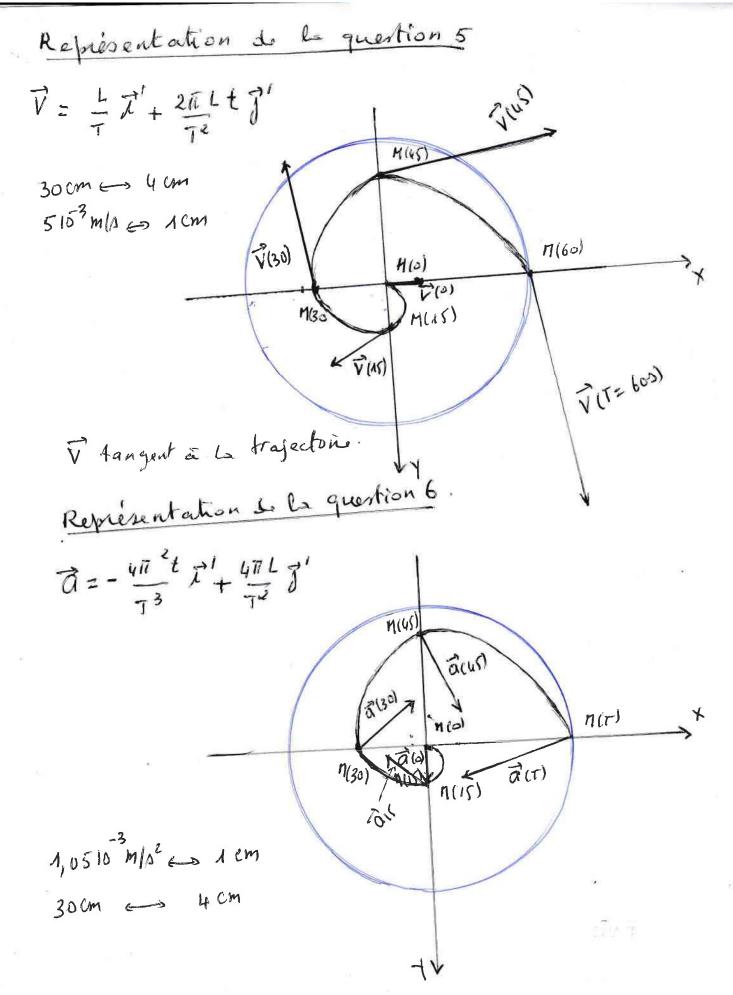
6) nême trajectoire qu'à la questions.

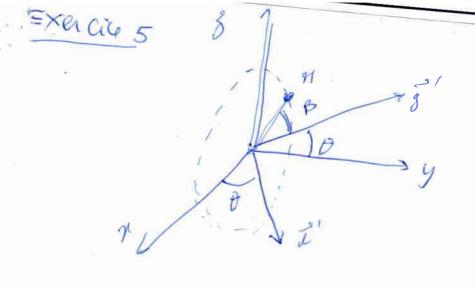
$$\overrightarrow{Q}_{a} = \overrightarrow{A}_{e} + \overrightarrow{q}_{e} = -\frac{4\pi^{2} t}{7^{3}} + \overrightarrow{T}_{e} + \overrightarrow{T}_{e} + \overrightarrow{T}_{e}$$

$$\overrightarrow{Q}_{a} = \frac{4\pi L}{7^{2}} \left(-\frac{\pi}{7} + \overrightarrow{T}_{e}^{2} + \overrightarrow{T}_{e}^{2} \right)$$

$$\overrightarrow{Q}_{a} = \sqrt{a_{e}^{2} + a_{e}^{2}}$$

	ta	0	15	130	145	160
1 -1 m	aux (SI)	O	-8,2210-4	165 10-3	- 3,47 10-3	3, 24 13 10
all		1: 05 10-3	1,0510-3	1,65 10-3		
Was li	(1ay (S1)	1 25 15-3	1.05510-3	1,9610-3	2,6810-3	3,45 10





$$\frac{\partial H}{\partial t} = R\cos\beta \int_{0}^{1} + R\sin\beta \int_{0}^{1}$$

$$R = \sqrt{4 \pi^2 \omega^2 v^2 / 4 \pi^2 } + R^2 \left(\omega^2 + \omega'^2 \right)^2 \cos^2 R + R^2 \omega'^2 / 6 \cos^2 R + R^2 \omega'^2 / 6 \cos^2 R + C'' (4 \omega^2 + \omega'^2) \cos^2 R + C'' (4 \omega^2 + \omega'^2) / 6 \cos^2 R + C'' / 6 \cos$$

Correction du devoir N°1 Mecanique - Exercice 2)

A) Pour trouver la fonction r(t), on we appliquer (par exemple) le TPC en référentiel non galiféen (en effer il y a un mouvement relatif).

- Système étudié : le pigeon d'argile M de masse m.

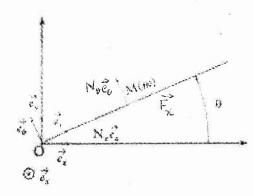
- Référentiel d'étude : $\Re(O;\vec{e_i},\vec{e_0},\vec{e_0})$ lié su bras du lanceur (non galiléen).

- Forces appliquées au système :

- réaction du bras $\vec{R} = N_0 \vec{e_0} + N_z \vec{e_z}$ (perpendiculaire au support car pas de frottement);

 $-\vec{F}_{m} = -m\vec{a}_{c}$ (d'entrainement) = $-m(-\omega^{2}r\vec{c}_{c}) = m\omega^{2}r\vec{c}_{c}$

 $+\overrightarrow{F_{KC}}$ qu'on ne cherche pus à calculer puisque $\mathscr{P}(\overrightarrow{F_{KC}})|_{\varphi} = 0$ (de Coriolis);



- Paissances des forces appliquées :

$$-\tilde{\varphi}(\vec{P})_{ijk} = 0$$
 car $\tilde{v}(M)_{ijk} = r\tilde{e}, \perp \tilde{e}$

$$| \cdot \mathcal{P}(\mathbf{R}) |_{\mathbf{R}} = 0$$
 car $\vec{v}(\mathbf{M})|_{\mathbf{A}} = i\vec{z}, \perp \vec{z}_0 \perp \vec{z}_s$ (pas de frostement)

$$\frac{d}{dt}(\theta_{e}(M)|_{q}) = \vartheta(\vec{F})|_{q} + \vartheta(\vec{F}_{e})|_{q} + \vartheta(\vec{F}_{e})|_{q} + \vartheta(\vec{F}_{e})|_{q} = F_{e}(\vec{F}_{e})|_{q} + \vartheta(\vec{F}_{e})|_{q}$$

Or
$$k_{x}(M)_{i,y}^{2} = \frac{1}{2}mv^{2}(M)_{i,y}^{2} = \frac{1}{2}m(r^{2}_{x_{x}})^{2} = \frac{1}{2}mr^{2}$$

done on a:

$$\frac{d}{dt}\left(\frac{1}{2}mr^{2}\right)=0+0+m\omega^{2}rr+0 \text{ son } \frac{1}{2}m2rr+m\omega^{2}rr.$$

$$mar=p+R+lie+$$

$$r-\omega^{2}r=0.$$
Association sur er.

$$r = w^2 r = 0.$$

Soit:
$$r = 0$$
. As jetten Min.

Cette équation différentielle admet comme solution:

 $r(t) = Ae^{i\omega t} + Be^{i\omega t}$
 $r(t) = Ae^{i\omega t} + Be^{i\omega t}$

soit
$$A = \frac{\ell}{8}$$
 et $B = \frac{\ell}{8}$

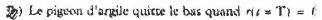
Pande politicat \$100 R= Reec+ Rzez

fie = mw on = mw ren

Fire - 2m WAU

= - 2mwg/rx

mi = mor



c'est-à-dire
$$\frac{f}{8}(e^{mT} + e^{-wT}) = f$$

en posant
$$X = e^{\alpha T}$$
 on obtient:

$$X + \frac{1}{X} = B$$

$$X^2 - 8X + 1 = 0$$

$$X_{1/2} = \frac{8 \, z \, \sqrt{60}}{2} = 4 \pm \frac{\sqrt{60}}{2}$$

comme X = ewf, on ne conserve que la solution positive, airel :

$$X_1 = 4 + \sqrt{15} = e^{wr}$$

$$T = \ln (4 + \sqrt{15})$$

(4 A.N.
$$T = \frac{\ln(4+\sqrt{15})}{6} = 0.34 s$$
.

3) Pour déterminer la trajectoire de M dans \mathcal{R}_{g} , on vs exprimer le vecteur \overrightarrow{OM} dans \mathcal{R}_{g} :

$$\overrightarrow{OM} = r\vec{\epsilon}$$

$$\overrightarrow{OM} = r(\cos\theta e_x + \sin\theta e_y)$$

$$\overrightarrow{OM} = r(\cos(\omega t)\vec{e}_1 + \sin(\omega t)\vec{e}_2)$$
.

Si on pose $\overrightarrow{OM} = x\vec{e}_x + y\vec{e}_y$, on a:

$$\begin{cases} x(t) = r\cos \omega t \\ y(t) = r\sin \omega t \end{cases}$$

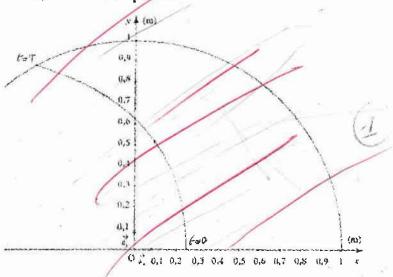
soit en remplaçant r par son expression (trouvée dans la question 4):

$$\begin{cases} x(t) = \frac{\ell}{8}(e^{\omega t} + e^{-\omega t})\cos\omega t \\ y(t) = \frac{\ell}{8}(e^{\omega t} + e^{-\omega t})\sin\omega t \end{cases}$$

pour
$$0 \le i \le T$$
.

$$y(t) = \frac{t}{8} (e^{\alpha t} + e^{-t \alpha t}) \sin \omega t$$

L'allure de la trajectoire de M dans M, est donc



Trocal de la Collins de la trajectoire pour 05 t 5 T=0,340 & X = 0 =) cosutzo = wt = M on wt = 3# $t = \frac{\pi}{12} = \frac{\pi}{12} = 0,262 A$ or $t = \frac{3\pi}{20} = \frac{3\pi}{12} = 0785 A T$ * yzo zn pin wt zo zn tzo o4 $t = \frac{\pi}{w} = \frac{\pi}{\zeta} = 012 > 7$ t(A) 0,05 0,1 0,15 0,20 0,262 0134=T d=wt (rad) O 0,6 0,9 1,2 1,56 1,8 0,3 2,04 0 (°) 0 17,19 34,38 51,57 68,76 90 103,14 116,88 (6m) 12,5 26 30 36 45 62 78 98 0 (0) 0

	-		1612	6	30	36	45	12	7-	1	+
		H (cm)	12,5°	24,84				62	78	98	
	M			24,04	24,75	22,38	16,3	0	- 17,73	-44,3	
1		y (cm)		7,68	16,94	28,2	41,94	62	75,95	87,41	-
			· n	(T=0134)	87, 4 7 0	} -5,95	6				
					62	M(0,262)				1885 -	
				41,	94	M	(0/2એ	w			
				2	8,2		M(OMS)	e			
0	10 10	.19	ā			A					
			- 44,3	-17,7	3 0		0) (tzo)				,
										2	X

Echell 10